Calibrated uncertainty for molecular property prediction using ensembles of message passing neural networks
نویسندگان
چکیده
Abstract Data-driven methods based on machine learning have the potential to accelerate computational analysis of atomic structures. In this context, reliable uncertainty estimates are important for assessing confidence in predictions and enabling decision making. However, models can produce badly calibrated it is therefore crucial detect handle carefully. work we extend a message passing neural network designed specifically predicting properties molecules materials with probabilistic predictive distribution. The method presented paper differs from previous by considering both aleatoric epistemic unified framework, recalibrating distribution unseen data. Through computer experiments, show that our approach results accurate molecular formation energies well out training data two public benchmark datasets, QM9 PC9. proposed provides general framework evaluating ensemble able estimates.
منابع مشابه
Mapping Neural Networks onto Message-Passing Multicomputers
This paper investigates the architectural requirements for simulating neural networks using massively parallel multiprocessors. First, we model the connectiv-ity patterns in large neural networks. A distributed processor/memory organization is developed for eeciently simulating asynchronous, value-passing connection-ist models. Based on the network connectivity and mapping policy, we estimate t...
متن کاملMapping Neural Networks onto Message - Passing
This paper investigates the architectural requirements for simulating neural networks using massively parallel multiprocessors. First, we model the connectivity patterns in large neural networks. A distributed processor/memory organization is developed for efficiently simulating asynchronous, value-passing connectionist models. On the basis of the network connectivity and mapping policy, we est...
متن کاملUncertainty of Artificial Neural Networks for Daily Evaporation Prediction (Case Study: Rasht and Manjil Stations)
This research uses the multilayer perceptron (MLP) model to predict daily evaporation at two synoptic stations located in Rasht and Manjil, Guilan province, in north-west of Iran. Initially the most important combinations of climatic parameters for both of the stations were identified using the gamma test; and daily evaporation were modeled based on the obtained optimal combination. The results...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Deep Packet Inspection Using Message Passing Networks
We propose a solution based on message passing bipartite networks, for deep packet inspection, which addresses both speed and memory issues, which are limiting factors in current solutions. We report on a preliminary implementation and propose a parallel architecture. 1 The Problem, Our Solution and Results Packet content scanning at high speed is crucial to network security and network monitor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Machine learning: science and technology
سال: 2021
ISSN: ['2632-2153']
DOI: https://doi.org/10.1088/2632-2153/ac3eb3